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EXTENDED PINCUS THEOREMS AND CONVERGENCE
OF SIMULATED ANNEALING

Abstract
Pincus' 1968 formula for the (unique) global minimum of a continuous function on a
compact set in EP is extended to finite multiple optima and to discrete and special
variants. The impact of these on associated ergodic irreducible aperiodic Markov chain
computation he initiated, (1970) currently called "simulated annealing”, is exemplified
and assessed leading to grave concern about what current simulated annealing processes

may converge to instead of optima.
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EXTENDED PINCUS THEOREMS AND CONVERGENCE
OF SIMULATED ANNEALING

Introductllon

In 1968, M. Pincus [1] derived a closed form expression for the (assumed) unique global
minimum point of a continuous function on a compact set S in EM as the limit of the expected value
(vector) of a one parameter family of distributions based on the continuous function F(x). Since
these expressions involve integrations over irregular sets and in the many variables (of E"), he
established in 1970 [2] an approximate computational method based on the Metropolis-Ulam, von
Neumann, et. al method [3] of associating an irreducible aperiodic Markov chain with the
approximations to Riemann integrals and using the strong law of large numbers for such chains to
generate an approximation to the unique global solution point. The relevance of this work to so-
called "simuiated annealing” as introduced in 1983 by Kirkpatrick, Gelatt and Vecchi [4] was not
noticed by these authors since there is no mention of the Pincus work therein. Nor is there any

reference to it in current 1988 work of Hajek [5] or by Chiang and Chow [6].

The analytic sharpness of the Pincus type formula is therefore here extended to
situations of finite global optima, in several variants, thereby providing insight into what simulated
annealing or sample Markov chain computations may converge to, both for finite discrete
optimization problems and for continuum problems of non-convex type which Pincus seemed to

have in mind.

The basic results are that the limit vector in Pincus-type formulas is a convex combination
of the global minimization vectors. The convex proportions depend on the relative function

shapes and volumes in the immediate neighborhoods of the individual global minima.

In the following we present an extended Pincus theorem and an extended discrete

Pincus theorem as two extremes of a possible general Pincus formula which would involve a sum




of multiple integrals of different dimensions corresponding to different parts of the domain S of
the function F whose global optima are sought. We proceed to examine for these implications of
facts like the values of the function F are only known as one performs sample jumps on Markov
chains whose transition probabilities are determined only as one makes sample jumps from a pre-

selected irreducible symmetric aperiodic Markov transition matrix.

Such facts raise considerable concern about what it is that a simulated annealing process
may converge to instead of a global optimum of the original problem. Indeed, our analytic
expressions give additional support to the lack of assurance simulated annealers have in their
results as exemplified by "re-annealing” and "annealing schedule” change devices introduced in

the hope of obtaining "better” optima.

Extended Pincus Theorems

In [1] M. Pincus gave a closed form expression for the unique global minimum vector of a
continuous function F(x) over a compact set S in EM as the limit of a sequence of expected
value vectors. We here extend this result to the case of finite global minima for two extreme
cases, one inwhich S is a discrete set of points. The proof arguments involve breaking the
integrals or sums involved into two parts, one in the neighborhood of a global optimum and the

other negligible for large parameter values.
Theorem 1:
Let (1) F(x) be continuous over a compactset S ¢ E
(2) The global minima z%, a = 1, ..., k of F(x) are contained in disjoint

closures Ou of open sets 0,, with 0a cS.




K
Then there exists {"} 0SS A >eoand 0, 3, Ha = 1

a1

such that

L Jmexp(ﬂ.-F(x)) dx/ J exp (—hF(x)) dx = }k_‘, Wz, i=12...,0
S S

A —> oo a=1

Proof: S may be divided into compact sets S, containing 0. and disjoint except for boundaries

of n-dimensional volume zero. Thus
S = t) S« and Is - ; I s
for integrals with n-dimensional volume measure.

LetG(x,A) =exp (-AF(x)). Then

(1) in G(x,x)dx/LG(x,x)duzLaxiG(x,x)dx/J G (x,A) dx

a S
Consider S, inwhich zo isthe only global minimum.

Now

(2) J“XiG(x,x)dx.ziaJ

G(x,2) dx + J (xi —z®) G(x, A) dx
SG

Sa

and

@) Use(x.x) c:lx]'1 Lne(x.x) ox = zf*u(on.7~)+UsG(x.x)drxJ'1 LG(Xa—Za“)G(x,k)dx

where 1 (o) =IS¢G(X’ A) dx /%', LpG(x,l) dx.

Evidently 0<pladr) and h wlo,A) =1 foralin.
o




We break the integration over S, in the last term into two parts which go to zero as the

first part volume does and as A — oo in the second part.

Let

NG ={x:|x-24 <e} fore >0, e <p/3 where p isthe minimum distance between

the z® of S.
Then

@ l IN:(x; -20) G(x,2) &x| s L:lxi-zﬂ G(x,A)dx se J'[N:G(x,l)dx

so that

(3.1) iUs G (x.2) d"r L‘:(Xi—z{’) G (x, 1) dx

<€

On Sg-Ng, whichis compact again, the minimum of the continuous function

F(x)-F(z*)20 is,say, §>0, since za isthe only global minimumof F(x) in S .

Let My = max [x—2z°| forxe Sa.  Then, multiplying numerator and denominator by
exp (AF(z)),

Us Glx.A) dx]q JS.,- N:(n -2) G(x, %) dx

where H(x, A) = exp(xF(z“)) G(x,2) = exp[-kF(x)- F@ ]

< Mq Usu(x.x)m]" Jsu—NaH(x.l)ck

4)

(4.1) <sexp(-18) on Su-N(.




so that

(4.2) jsc- ” H(x. l) dx < exp (-18) V(Su)

where V(S%) isthe volume of Sa.
Since F(x) - F(z%) is continuous,for x € Ny = {x :|x-z%4 < 7},

F(x)- F(z%) < & /2. Hence

(4.3) LH(X,A) dx > JN:H(X,X)dx 2 VN exp (-15/2)

and (4) is bounded above by

(4.4) M V(Su) exp (- M/Z)/ V(Ng)

Thus

(5)

Use(x,x) dxr Lﬂx, G(x, ) o - 20 u(a,k)' < e+ep(-28/2) M V(S2) / V(N9

whichgoestozeroas € - 0 and A — oo,

Since 0 <y (a,Ah) and Zu(a.?») =1 forall A, everysequence (kn} — oo contains a
a

subsequence forwhich p (o,2;) convergestosome p(a),0<p (a), Yu@)=1.
a

Notethat u (o,A) and p (a) areindependent of the coordinate x; .

Therefore, going back to (1), every non-negative sequence {7\.-} — o contains (b.a.0.n.) a

subsequence ({A,} suchthat




6
K
© L JXIG(x,A)dx/J GxMdx = ¥ p(o)zf
Ac— o0 JS S a=1
Q.E.D.
in Pincus' formula, k = 1, p (a, A) = 1, so that no subsequence is necessary.
The restriction to a subsequence of A, — o can be removed sometimes by additional
special conditions on F(x) and the properties of S in the neighborhood of the z%, conditions
which may be fulfilled in some optimization applications but not ones with F(x) non-convex at a z%.
Some Examples
First, however, to give some feeling for the convergence situation, we consider several
one-dimensional explicitly integrable examples as in Figure 1:
FIGURE 1
A F (x) A F (x)
5 10 D.E
4 8 C.E
3 6 CE
2 4 D
1 2 o E
o] > 0 \
O 12 3 45 6 789 1-3 g
01 2 3 45 6 7 8 9

Convergence: A,B~5 Convergence: C,D ~ 8.77,E~1-3%




A: F)=}X, 1 <x<5
10-x,5<x<9

Here S1 ={x:1sx<5}and S; ={x:5<x <10}

(A.1) [ x G(x, A)ax =2~ [e*+0 (] ; [s Gx, A)dx =" [e*+0 (Y]
S !

verifying 21 = 1.

(A.2) I x G{x,A)dx =2 [9e™+ 0 (%) ; fs, G{x, A)dx=1" [e*+0(e=]
S,

verifying z2 = 9.

Clearly, forlarge A, p(1,A) = 1/2 + 0(e™**) and p(2,A)=1/2 + 0(e™*H
Thus, as A — oo, convergence of (1) is to
(A.3) -;— (1) +—;-(9) =5,  the global maximum of F(x)!

Next consider

B.1) Fua=|X 15Xx<2
(B-1) FMI=116%)/7, 2<x<9

Then p(1,A) =9/16 + 0(e~22) ; (2, A) = 7/16 + 0(e~2*) and convergence is to

(B.2) (9/16):1 + (7/16)-9 = 5

The value here is 11/7, over 50% higher than the minimum of 1. Note that the difference

in shape and behaviorof F(x) in Sy and Sz has made p (1) =p(2).




(C) Fix)=}4x, 1$x<2
13-x,3<x<9

Here S, ={x:1<x<2}, §,={x:3sx<9}. S is not convex and not connected.

In obvious abbreaviation,

(C.1) L‘x Gdx = (42} [e**+0(e®) ; ]81 Gax = (42)-1 [e=* + 0 (e

verifying 21 =1.

(€.2) ] X G = 92 6 40 (e ) ; j Gax= (1)1 [+ 0 (e-1)]
S

Sz

verifying z2 = 9.

Forlarge A, p(1,A) = 1/37 + 0(e~4*), (2, A) = 36/37 + 0(6—6*) and convergence is to

1. (1/37) + 9 - (36/37) = 8.77

The sharper rate of rise of F(x) and much smaller volume in Sq re S5 has nearly eliminated

the Sy contribution.

D: Extending F(x) through 2 < x <3 by F(x) = 4 + 2x so that F is continuous and S convex
and connected, the contribution as A — oo is 0 (l" e-103) in [ 1dex andis 0 (l" e8}) in
S

[ 1 Gdx so that convergence is to the same values as in example C.
S

E:  Extend F(x)to F(x) = [4X,18< X S 2 {9 have a unique global minimum at x = 1-, with
4 + 20,2<x<3

13x,3sx<9

S1afx:1-5sxs3) and S2 = {x: 3sx59) and value 4-43 for0 < § very smal.




Then

(E.1) I xGdx /I Gdx = [(1-8) + 0(c-41-81] / [1 + 4e-81 + 0 (e}
S: S

and

(E.2) I X G /J Gax = 36 045 [1 - 4¢3
S2 S
Thus for small §, it is only for large A that the unique and very little smaller global minimum is

picked up e.g.that (E2) — 0.
Special and Discrete Pincus Theorem Extensions

Under special conditions on F(x) and S, asymptotic expansions for the integrals of
xj G(x, A) and G (x, A)for iarge A may be obtained by Laplace's method, see pages 36-37 of
Erdelyi's monograph "Asymptotic Expansions” [7] and by Hsu's extensions to muitiple integrals
[8],[9]. We use only the G (x,A) = exp [ -A F(x) ] cases, since it is only these in which we might
need to consider a subsequence of A tending to infinity. Thus, for us, Hsu's results, pages 629-
30 of [9] for unique global minimum on the boundary of Sy or page 626 of [8] for interior global

minimumnof F(x)in Sy, would give us

L ], eotormlec - enleer){eos nleml)t

03
A —) oo

where Hy, [F(z2)] isthe n-dimensional Hessianof F at z& . The set Sg is supposed to contain
aclosed finitely connected domain with continuously turning targent hyperplane which includes
z%. The function of F is to be of class C2 (continuous with continuous first and second partial

derivatives ) . The Hessian required to be positive implies that F(x) is strictly convex at z& , a most




?_—_'
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restrictive condition. Thus, Pincus' result is much stronger than the asymptotic Laplace-Hsu

results.

Discrete Case .

Consider a bounded discrete set of points D € EM and a function F(x) defined on D
and with global minimum there at z®, a =1,... k.
Theorem 2: |f

(1) F(x) has a finite number k of globalminima in D at 2, o =1,...,k

2) D] < Vp andforsome Aq > 0,

E exp [-Ao F(X)] <o

xeD

(3) inf [F(x)- F(z%]= 6 >0

D\U(z9)
a

Then

Kk
L Y xiexp[-AF(x)} / Y, exp[-AF(x)]= k! Y £ i=1...,n

A >0 xeD xeD w1

Proof: Let G(x,A) = exp[-AF(z)], H(x,2) = exp[-AF(x)- F(2%) ] ,

Z=U{#) andD\Z=0'.
[+ 3

Then

7y 2 %e0N/ T eun=- X xHEN/ Y, HE
xeD

xeD xeD xeD




Kk
(71) = [21 $+ 3 nH(XA)] / [k+ T HXA)
O=

xeD' xeD’

Let A =2Ag+A1, A1 2 0. Then
(72 ) H(xA) = H(xA) exp[-A F(x)-F(z®)] < exp (A1 §) H(x A

So

8) X HENS epM§ Y Hxk)

xeD' xeD’

81) X xHXMNS VoY, HxA s Voep(hd D HEx

xeD' xeD’ xeD’

82 L T Hxy=L I xHxN=0

A oo xeD' Ao xeD'

and from (7.1 ),

k
(9) X %GKA /] S Gy =k'Y 2, i=1,...,n,
xeD a=1

xeD

Q.E.D.

From Optimization to Simulated Annealing

Pincus, understanding that his 1968 results [1] could not be made operational without a
means of approximately evaluating integrals over irregular sets and in multi-dimensional spaces,
provided in 1970 [2] a method of computation. Since F(x) was continuous on a compact set S,
the Riemann integrals could be approximated by summing the values of the integrands at a finite
grid of points in S each multiplied by the volume of its grid cell. His key was the World War Il work

of von Neumann, Ulam, Everett and Metropolis [3] as partly summarized but not referenced in

11




Chapter 9 of the excellent 1964 Methuen monograph of Hammersley and Handscomb, Monte
Cario Methods [10].

Anincisively clear rendition of the backgrounds and basic idea of associating an ergodic v
ireducible (finite state) Markov chain satisfying the strong law of large numbers so that a sample |
sequence of Markov transitions could give with probability one an expected value which would be
a desired integral can be found in "The Monte Cario Method” by N. Metropolis and N. Ulam in the
1949 Journal of the American Statistical Association, pp. 335-341, [13]. This paper which

references other von Neumann, Everett, Ulam work makes clear (page 338) that the method had
been and was being applied o many problems involving (partially) stochastic flows governed by
integro-differential equations, not just to Boltzmann equilibria in "statistical mechanics.”

Ignorance or unavailability of these references likely led to the current misapprehension of history

as in the pretace to the 1987 book [11] of van Laarhoven and Aarts Simulated Annealing: Theory
and Applications, D. Reidel Publishing Co., Dordrecht, Holland.

Pincus’ work dealt with optimization problems with a unique optimum. His expressions for
this optimum as a limit of expected value expressions led him to make the Monte Carlo Markov
chain connection. Our results for non-unique global optima, the usual case, provides insight into
convergence properties of associated Markov sample runs designated "simulated annealing,”

free of metaphysical non-mathematical ideas of melting, cooling and freezing.

Markov Chain Computation and Simulated Annealing
Pincus in [2], borrowing from [3], associated with each point xX of S inthe approximating

Riemann integral sums

(10.1) ki x exp [AF(x)] and k)'f‘ exp [-AF(x")

The N-vector of coordinates (forall A > 0) "




e

(10.2) T = exp[ -AF] /kZexp [AR) . j=1,..N

where Fx = F(xK) and A is omitted where clear from context. The ITj> 0 are to be the (unique)
"invariamt” or "stationary” distribution of an (ergodic) irreducible, aperiodic Markov process with
N "states" (or "configurations” in simulated annealing "SA" nomenclature) and matrix (Pj),i,j =

1, ..., N. Starting with an arbitrary symmetric, irreducible, aperiodic Markov matrix P” ,

Pij is
determined by
[Pl I /T L /T < 1, %

(11) Pij=<Pij ,ifnj/niZ“,i#i

l"a'u T Pt /) i) 5= i /<)
jeJ

The Pi' j are designated Gijj ("generation probabilities”) in SA literature which has

Pjj = GijjAjj where A;j; is an "acceptance” probability matrix, see [11], page 13. The SA literature

alsouses A1 = ¢, orT, sothatas A — « , ¢,or T (termperature) — 0.

The Markov (sample) chains are defined as follows:

If currently in "state” i, use the P; i (Gij) probabilities to pick state j. CalculateIT; / IJ; . If
I / I 2 1, accept j asthenewstate. If I / IT; < 1, then with probability ITj / IT; accept j and
with 1 - II; / TI; go back to the original state i. This procedure corresponds to sample chains
using P;jj. Operationally, ITj / IT; 21 means Fi < Fi: I / T; < 1 means Fj > Fj. Acceptance
of j is (Metropolis criteria) by comparing exp [- A Fjl with a random number R drawn from the
uniform distribution on (0,1]. Acceptifexp [- A Fjl >R, otherwise stay ati.

13




How long a Markov chain to use for each A value is not well specified in SA, see [11]

pages 59-61, but the idea is (page 10) "untii equilibrium is approached sufficiently closely",
whatever "equilibrium®, undefined mathematically, may mean. Supposing it means getting close I
to optimum, this is usually impossible to estimate or else because of horendous to do
computation time. Pincus in [2] gives a rough Chebychev inequality bound re convegence to the
expected value for the case of a unique global minimum. A similar bound is mentioned [11]
page 56 without reference to Pincus and for, presurnably, the general multiple optima situation
which Hajek [5] and others explicitly mention. All [11, 12] seem to have the idea that one has
"convergence” to a single state i.e. that a unique minimum state for each A~ (“temperature”)
employed is achieved in computation which is stopped either when the minimum state repeats
itself often or by choosing the state reached when a fixed number of transitions is reached. Proof
that such repetition can "unreasonably” often occur (even for simple heads-tails coin tossing) may
be found in Feller [13] Chapter I, especially pages 77-86, re the Arc Sine law and Probabilities of

Long Leads.

Example Computations

Nearly all SA computation (and much theory) has employed Pi' i matrices with equal Pi' i 'S

in a band around the main diagonal e.g., uniform non-zero probabilities between "neighboring”
states, zero between non-neighboring states but with positive probability of reaching any one

state from any other in possibly multiple steps (the ‘irreducibility” property).

Abstracting 3 states, 1, 2, 3, corresponding to x = 1, 5, 9 from example A with Fy= 1,
F2=5, .Fg= 1, using the uniform ( P;; ) matrix of elements P|; = 1/3, choosing A= 0.5
(temperature = 2) and making a sample run of 96 transitions starting with state 1, we reached state .
one 47 times, state two 7 times, state three 42 times. No sojourn in a state lasted more than 4
times; every state was a global minimum starting with transition 66 whereupon the transitions were

flip-flops between the global minimum states 1 and 3 rather than an "equilibrium” at either. The




relative frequencies of 0.4948, 0.0722, 0.433 for respectively states one, two, three correspond

to the theoretical values of 1/2, 0, 1/2 from our "discrete” Pincus Theorem.

We next consider a class of travelling salesmen problems with 2n cities having
obvious global optimal tours of minimum distance traveled. The city locations are at points
(%,1),....(1,n), (n0),...,(1,0)inthe plane with "rectangular” (e.g. ")) distance between
pairs of cities. We label the tours (or configurations) as cyclic permutations (1, ..., 2n) where
(1, 1), ... (1, n), respectivety correspond to cities1,...,n and(n, 0),..., (1, 0) correspond to
n+1,...,2n. Clearly the global optimal tours are those starting at any city and going clockwise
(or counter clockwise) around a "rubberband” encircling the cities. The transitions are an

exchange of a pair of cities in a permutation. Thus
@ There are 4n global optimal tours
(b)  (2n)! tours, with many local minima
(c) The a priori probability of finding a global optimum is quite small, 0 (4n/(2n) ! )
(d) The average tour length is 0( n2)
(6)  The optimal tour length is 2n < < 0 (n?).

Starting with 2n = 500, the Kirkpatrick et al "Metropolis” algorithm [ 4 ], the tour (1,...,n,
2n, 2n-1,...,n+ 1), we made a number of runs on a SEQUENT computer (roughly equivalent to
a VAX 780). We present results for some "high" temperature runs using 1000 transitions and
"low" temperature runs using 3000 transitions - - - 1000 transitions took 45 CPU minutes on the

computer.

Notice that at high temperatures the "equilibrium” tends toward the average case; at low

temperatures it gets stuck in local minima.

15




Simulated Annealing Runs

(500 Cities, 1,000 Transitions per run, starting tour cost 998, optimal cost 500.)

Temperature ( A1) Cost Last Tour
10.0000 4494
(Case 1) 1.0000 3284
0.1000 3260

(Case 1)

(Case 2)

(Case 3)

(Case 4)

(Case 5)

1.0000
0.1000

0.5000
0.1000

1.0000
0.1000
0.0100

1.0000
0.1000
0.0100

1.0000
0.5000
0.1000

0.0100

1.0000
0.1000
0.0100

(3,000 transitions per run, starting tour cost 998)

1146
1014

1016
998

1146
1014
1014

1150
1040
1040

1128
1024
1010

1010

1206
1026
1026

Cost Best Tour Found

998
998

998

998
998

998
998

998
998
998

998
998
998

998
998
998

998

998
998
998

16
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Individual Sample Runs Versus Ensemble Properties

] Simulated annealing analogies to physical or thermal equilibrium statistical mechanics
confuse between average properties of ensembles, properties of averaged behavior of many
N individual particles, with that of individual particle behavior. The vast difference mathematically

between ensemble properties and behavior in individual sample runs is brought out in Feller [13]
Chapter [ll, "Coin Tossing and Random Walks.” Without such behavior there would likely be no
gamblers nor attempts at gambling systems.

In our first SA example we chose only three states and 96 transitions in order to ensure

that the ergodicity property of the sample Markov chain would take over. As mentioned, the latter
two-thirds of the transitions involved flip flops between the two global minima states (with ng

visitation of the poorer state). Is this equilibrium, the state at which to terminate the sample run, as
undefined in von Laarhoven and Aarts [11] especially page 10?

In the second example, starting with a state close to optimum in the sense that only 2
particular interchanges would suffice to obtain an optimum, not only did we fail to improve from this
state but instead got substantially worse results for the higher (melting) temperatures. Of course,
we only {!) did 1,000 and 3,000 transitions for a problem in which 500! transitions are a priori
possible. But 45 minutes (CPU time) per 1,000 transitions were required on a mainframe
computer. And, "equilibium" seemed to be attained on these runs.

Many combinatorial optimization problems can be stated in continuum form and solved,at
worst approximately, by continuum methods. For example, integer programming problems with
network constraints and integer data can be solved exactly with extreme point algorithms which
are also two orders of magnitude more efficient in time and size accomodated than general
purpose LP algorithms. Christophides algorithm for the traveling salesman problem based on
network structure can guarantee no worse than 150% over optimal cost. The simulated annealing
procedures can guarantee nothing.

Another point exhibited by our Pincus examples is that the convergence of the
integral formulations may be to a different convex combination of the global minima from that
of the approximating Riemann sums. The latter, via our Discrete Case Theorem, is always to
4 the simple average of the global minima. Thus the interchange of limit operations, A — oo

and sum — integral can make large differences in the fluctuation of states visited (and how often)

]




within a sample run. This point applies whether or not the optimum is unique since approximate
non-global optima may have equal values. Sample runs often converge, see Hammersley and
Handscomb [10], to local non-global optima (with flip flops) since transitions to better states may
be possible only through (very unlikely) transitions to states poorer than the local optima.

Thus simulated annealing computations cannot be trusted to deliver global optima.
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